Extremal graphs for the identifying code problem
نویسندگان
چکیده
An identifying code of a graph G is a dominating set C such that every vertex x of G is distinguished from other vertices by the set of vertices in C that are at distance at most 1 from x. The problem of finding an identifying code of minimum possible size turned out to be a challenging problem. It was proved by N. Bertrand, I. Charon, O. Hudry and A. Lobstein that if a graph on n vertices with at least one edge admits an identifying code, then a minimal identifying code has size at most n− 1. They introduced classes of graphs whose smallest identifying code is of size n − 1. Few conjectures were formulated to classify the class of all graphs whose minimum identifying code is of size n− 1. In this paper, disproving these conjectures, we classify all finite graphs for which all but one of the vertices are needed to form an identifying code. We classify all infinite graphs needing the whole set of vertices in any identifying code. New upper bounds in terms of the number of vertices and the maximum degree of a graph are also provided.
منابع مشابه
Characterizing Extremal Digraphs for Identifying Codes and Extremal Cases of Bondy's Theorem on Induced Subsets
An identifying code of a (di)graph G is a dominating subset C of the vertices of G such that all distinct vertices of G have distinct (in)neighbourhoods within C. In this paper, we classify all finite digraphs which only admit their whole vertex set as an identifying code. We also classify all such infinite oriented graphs. Furthermore, by relating this concept to a well-known theorem of A. Bon...
متن کاملCombinatorial and algorithmic aspects of identifying codes in graphs. (Aspects combinatoires et algorithmiques des codes identifiants dans les graphes)
v Combinatorial and algorithmic aspects of identifying codes in graphs Abstract: An identifying code is a set of vertices of a graph such that, on the one hand, each vertex out of the code has a neighbour in the code (the domination property), and, on the other hand, all vertices have a distinct neighbourhood within the code (the separation property). In this thesis, we investigate combinatoria...
متن کاملEccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
متن کاملThe Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains
As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...
متن کاملThe Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 32 شماره
صفحات -
تاریخ انتشار 2011